It was as an undergraduate at Cambridge where Dr Harriet Groom's passion for molecular virology first began. Harriet completed her PhD under the supervision of Andrew Lever in the Department of Medicine, understanding the control of HIV gene expression. She then moved to the National Institute of Medical Research (now Francis Crick Institute) in London where she helped to disprove the reported novel retrovirus XMRV’s link to human infection and disease. Harriet then began my work on cellular inhibition of retroviruses, focusing on HIV, before moving back to Cambridge in 2015 as a Henslow Research Fellow at Downing College and an Associate Principal Investigator in the Department of Medicine where she continued work on cellular inhibitors of HIV. In her current fellowship Harriet continues to unpick how the intricate interactions between cells and viruses during infection can dictate host response and help us understand normal cell behaviour using retroviruses, herpesviruses and coronaviruses as model systems.
Harriet is currently a Stanley Elmore Research Fellow at Sidney Sussex College and an associated PI in the Department of Medicine, where she researches the molecular interactions between retroviruses and human cells.
Show All
More powerful, longer-lasting, faster-charging batteries – made from increasingly more sustainable resources and manufacturing processes – are required for low-carbon transport and stable electricity supplies in a “net zero” world. Rechargeable batteries are the most efficient way of storing renewable electricity; they are required for electrifying transport as well as for storing electricity on both micro and larger electricity grids when intermittent renewables cannot meet electricity demands. The first rechargeable lithium-ion batteries were developed for, and were integral to, the portable electronics revolution. The development of the much bigger batteries needed for transport and grid storage comes, however, with a very different set of challenges, which include cost, safety and sustainability. New technologies are being investigated, such as those involving reactions between Li and oxygen/sulfur, using sodium and magnesium ions instead of lithium, or involving the flow of materials in an out of the electrochemical cell (in redox flow batteries). Importantly, fundamental science is key to producing non-incremental advances and to develop new strategies for energy storage and conversion.
This talk will start by describing existing battery technologies, what some of the current and more long-term challenges are, and touch on strategies to address some of the issues. I will then focus on my own work – together with my research group and collaborators – to develop new characterisation (NMR, MRI, and X-ray diffraction and optical) methods that allow batteries to be studied while they are operating (i.e., operando). These techniques allow transformations of the various cell components to be followed under realistic conditions without having to disassemble and take apart the cell. We can detect key side reactions involving the various battery materials, in order to determine the processes that are responsible ultimately for battery failure. We can watch ions diffusing in, and moving in and out of, the active “electrode” materials that store the (lithium) ions and the electrons, to understand how the batteries function. Finally, I will discuss the challenges in designing batteries that can be rapidly charged and discharged.
Musical instruments like the clarinet and saxophone do not obviously have anything in common with a bowed violin string. This talk will explore the physics behind how these instruments work, and it will reveal some unexpectedly strong parallels between them. This is all the more surprising because all of them rely on strongly nonlinear phenomena, and nonlinear systems are notoriously tricky: significant commonalities between disparate systems are rare. For all the instruments, computer simulations will be used to give some insight into questions a musician may ask: What variables must a player control, and how? Why are some instruments “easier to play” than others?
Please Note: Due to building works, the CPS office at 17 Mill Lane, Cambridge is now closed until further notice. Business operations as usual. Please contact us by email only: philosoc@group.cam.ac.uk
Cambridge Philosophical Society17 Mill LaneCambridgeCB2 1RXUnited Kingdom
Office Hours: (Temporarily closed)Monday and Thursday -10am-12pm and 2pm-4pm.
philosoc@group.cam.ac.uk