Darwin in Conversation

Charles Darwin, c.1854 by Messrs Maull and Fox.

Cambridge University Library will be holding an exhibition of Charles Darwin’s letters, some 15,000 of which he wrote during his lifetime. The exhibition: Darwin in Conversation - The endlessly curious life and letters of Charles Darwin, is held in the Milstein Exhibition Centre opens on 9 July and runs until 4 December 2022.

The exhibition provides a fascinating insight into man driven by experiment and interaction with others. Cambridge Philosophical Society has a long relationship with the Darwin family, which goes back to the very early days of Charles Darwin's career and that of the Society.

While the Society was not the first to publish Darwin's research, his notes on insects were first published in a book; Illustrations of British Entomology: Or, A Synopsis of Indigenous Insects: Containing Their Generic and Specific Distinctions by James Francis Stephens in 1829. It was however, the private publication of a pamphlet by John Stevens Henslow in 1835 that brought Darwin's research to a wider audience and helped to establish Darwin's reputation among scientists.

Charles Darwin
Extracts from Letters to Henslow
Cambridge: 1835. Cam.c.835.25

One of the founders of the Cambridge Philosophical Society, John Stevens Henslow (1796 – 1861) is best remembered as a friend and mentor to his pupil Charles Darwin, a student at Christ's College. In 1831, Henslow was offered a place aboard the survey ship HMS Beagle on a two-year voyage to survey South America. Dissuaded by his wife to join the voyage, Henslow recommended Darwin as the ideal replacement. During the voyage, Darwin corresponded by letter with Henslow after reaching South America, and collected specimens with him in mind, particularly plants. Extracts from ten of Darwin's letters from South America to Henslow were first read out at a meeting of the Cambridge Philosophical Society on 16 November 1835, around the time that the ship reached Tahiti.

The pamphlet 'Extracts from Letters to Henslow' was printed without Darwin's knowledge. Upon learning of this pamphlet, Darwin was "a good deal horrified" at Henslow making public "what had been written without care or accuracy". The publicity helped Darwin's career, and at the end of his life acknowledged their friendship as the most important "circumstance" of his life.

The original pamphlet is now rare. According to American Book Prices Current only four copies have appeared at auction since 1975. On 19 June 2014 Christies auctioned an original copy in New York (Sale 2861) and realised $221,000.

In 1960 it was reprinted privately to mark the 100th anniversary of the publication of the "Origin of Species" on 26 November 1859 and issued to Members and Associates of the Society.

Two of Charles Darwin's sons have been former Presidents of the Society. George Howard Darwin was twice President in 1890-1892 and again from 1910-1912. Francis Darwin was President in 1896-1898.

Find out more here: https://www.lib.cam.ac.uk/darwin

Tagged with:

Share this article:

Themes

Publications

Discover our Journals & Books

From Darwin’s paper on evolution to the development of stem cell research, publications from the Society continue to shape the scientific landscape.

Membership

Join the Cambridge Philosophical Society

Become a Fellow of the Society and enjoy the benefits that membership brings. Membership costs £20 per year.

Join today

Upcoming Events

Show All

12

03

Towards a Net Zero World: Developing and applying new tools to understand how materials for Li and “beyond-Li” battery technologies function

Professor Dame Clare P. Grey

  • 18:00 - 19:00 Bristol-Myers Squibb Lecture Theatre Lent Term Honorary Fellows Lecture

More powerful, longer-lasting, faster-charging batteries – made from increasingly more sustainable resources and manufacturing processes – are required for low-carbon transport and stable electricity supplies in a “net zero” world. Rechargeable batteries are the most efficient way of storing renewable electricity; they are required for electrifying transport as well as for storing electricity on both micro and larger electricity grids when intermittent renewables cannot meet electricity demands. The first rechargeable lithium-ion batteries were developed for, and were integral to, the portable electronics revolution. The development of the much bigger batteries needed for transport and grid storage comes, however, with a very different set of challenges, which include cost, safety and sustainability. New technologies are being investigated, such as those involving reactions between Li and oxygen/sulfur, using sodium and magnesium ions instead of lithium, or involving the flow of materials in an out of the electrochemical cell (in redox flow batteries). Importantly, fundamental science is key to producing non-incremental advances and to develop new strategies for energy storage and conversion.  

This talk will start by describing existing battery technologies, what some of the current and more long-term challenges are, and touch on strategies to address some of the issues.  I will then focus on my own work – together with my research group and collaborators – to develop new characterisation (NMR, MRI, and X-ray diffraction and optical) methods that allow batteries to be studied while they are operating (i.e., operando). These techniques allow transformations of the various cell components to be followed under realistic conditions without having to disassemble and take apart the cell. We can detect key side reactions involving the various battery materials, in order to determine the processes that are responsible ultimately for battery failure.  We can watch ions diffusing in, and moving in and out of, the active “electrode” materials that store the (lithium) ions and the electrons, to understand how the batteries function.  Finally, I will discuss the challenges in designing batteries that can be rapidly charged and discharged.  
 

View Details

17

03

Acoustics of musical instruments - why is a saxophone like a violin?

Professor Jim Woodhouse

  • 18:00 - 19:00 Bristol-Myers Squibb Lecture Theatre Lent Term

Musical instruments like the clarinet and saxophone do not obviously have anything in common with a bowed violin string. This talk will explore the physics behind how these instruments work, and it will reveal some unexpectedly strong parallels between them. This is all the more surprising because all of them rely on strongly nonlinear phenomena, and nonlinear systems are notoriously tricky: significant commonalities between disparate systems are rare. For all the instruments, computer simulations will be used to give some insight into questions a musician may ask: What variables must a player control, and how? Why are some instruments “easier to play” than others?

View Details